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The principal linear thermal expansion coefficients of chrysotile asbestos have been 
measured over the approximate temperature range 80 to 270 K. Implications of the 
results on: (i) the influence of thermal strain upon the specific heat capacity, and (ii) the 
temperature variation of the reduced volume dependence of the lattice vibrational 
frequencies have been assessed as far as available ancillary data permit. The principal 
linear thermal expansion coefficents of specimens prepared from composite bars consisting 
of phenol formaldehyde resin reinforced with chrysotile fibre in random and preferential 
dispositions, have also been measured over this temperature range. An appraisal of the 
results in the neighbourhood of ambient temperature has been undertaken in terms of 
a simple structural model. It transpires that a satisfactory account of the thermal 
expansion results for the composites is provided in terms of the thermal and elastic 
properties of the constituents for directions parallel to the pressing directions. The 
limited ancillary data available leave the principal causes of the less satisfactory agreement 
in directions at right angles to the pressing directions an open question, though a 
suggestion is advanced concerning the direction which further investigations might take in 
order to resolve this uncertainty. 

1. Introduction 
The increases of stiffness and strength which may 
be achieved in plastics by the addition of well 
dispersed fibres of asbestos are well known. A 
wide variety of products has been based on 
materials of this type for many years [1 ,2] ,  where 
significant improvements of performance have 
been achieved in complex structures at a reasonable 
cost. For many applications a random distribution 
of fibres within the matrix provides the most 
appropriate reinforcement, but in some cases 
preferential orientation is desirable in order to 
make the fullest use of the additional stiffness 
and strength available in particular directions. 

The thermal expansion characteristics of the 
composite formed by the addition of short, 
structurally anisotropic fibres to a plastic matrix 
are strongly influenced by the volume fraction and 
orientation distribution of the fibres. In addition 
*Present address: Rolls-Royce and Associates Ltd, Derby UK. 
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to being of general interest in a wider context, a 
detailed knowledge of this influence is particu- 
larly important in specialized applications of 
asbestos fibre-reinforced plastics where dimensional 
changes accompanying variations of temperature 
are critical. 

The investigation to be described was under- 
taken in order to identify the main features of the 
temperature dependence of the thermal expansion 
characteristics of the basic unidirectional com- 
ponents of typical asbestos fibre-reinforced plastic 
structures, in which chrysotile fibre was employed. 
Because of their wider interest in a more general 
context, the measurements were extended to 
include the temperature dependences of the 
principal thermal expansion characteristics of the 
constituents of the composites, i.e. the resin and 
the chrysotile spelk. The account concludes with 
an assessment of the extent to which the thermal 
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expansion characteristics of the composites may 
be understood in terms of the known physical 
properties of the constituents. 

2. The specimens 
2.1. Constituent materials 
The resin employed as matrix in the present study 
was phenol formaldehyde resin, prepared from 
constituents including phenol and formaldehyde 
in the molar ratio 1:1.33. Full details of the 
preparation of a sample of the pure resin have 
been given elsewhere [3], together with accounts 
of measurements of its linear thermal expansion 
coefficient, specific heat capacity, Young's 
modulus and their interpretation in atomic terms. 
For convenience in later comparisons, the thermal 
expansion results for the pure resin are recapi- 
tulated in Fig. 8, after the presentation of the 
results for the present specimens. 

The reinforcement took the form of chrysotile 
fibre, teased from spelk which had originated from 
the Cassiar mine in Northern British Columbia. 

2.2. Specimens of chrysotile 
The serpentine group of asbestos, of which chryso- 
tile is the sole member, has the chemical formula 
Mg3Si2Os (OH)4. The structure is essentially a 
layered type, based on a pseudo-hexagonal net- 
work of SiO4 tetrahedra forming a sheet, in which 
all the tetrahedra point one way. A brucite layer, 
Mg(OH)2, is joined to the SiO4 network in such 
a way that on one side two out of every three 
hydroxyls are replaced by oxygens at the apices 
of the tetrahedra. The mismatch in the dimensions 
of the silica and brucite sheets introduces a strain 
in the structure which results in curvature of the 
sheet with the brucite layer on the outer surface. 
X-ray diffraction studies [4, 5] have indicated that 
the resulting cylindrical lattices take the form of 
closed concentric cylinders, spirals and sometimes 
a helical arrangement. This picture has been 
confirmed by high resolution electron microscopy 
[6]. These structures and the voids between 
them appear to be partially filled with an 
amorphous magnesium silicate gel, the remaining 
pore volume being between approximately 4% and 
5% [7, 8].  On the macroscopic scale, the symmetry 
is hexagonal and this necessitated thermal 
expansion measurements in two directions at right 
angles, i.e. parallel and perpendicular to the fibre 
direction. 

Blocks of approximately 5mm square cross- 

section were prepared from a large block of spelk. 
The specimens used for measuring thermal ex- 
pansion parallel to the fibre axis were cut so as to 
measure 10ram in this direction. The specimens 
used for measuring thermal expansion perpendi- 
cular to the fibre axis were cut into approxi- 
mately 5 mm cubes. The specimens were prepared 
by cleaving along the fibre direction and grinding 
through the spelk at right angles to the fibre 
direction with a tungsten wire saw. Preparatory 
work indicated that oil lubrication and carbo- 
rundum loading contaminated the product and the 
final grinding was performed over a period of 
several hours using the tungsten wire alone. 
Although slow, this technique ensured that the 
specimens so produced were free from fluffy ends, 
which would have reduced the accuracy to which 
the thermal expansion could be measured in the 
direction parallel to the fibres. 

2.3. Compos i t e  bars 
Two composite bars were produced. The first of 
these, henceforth known as the "random bar", was 
prepared by impregnating teased fibre with resin 
and pre-curing at 50~ for 4 h  to remove excess 
solvent. The composite was then pressed to 
3 .86x 106Nm -2 in a hot mould at 150~ for 
30rain, by which time the resin was fully cured. A 
block of composite approximately 13 mm square 
cross-section and 100mm long was produced, 
from which specimens were subsequently prepared 
as described in Section 2.4. For the second bar, 
henceforth known as the "aligned bar", teased 
fibre was carded and drawn, thus aligning the 
fibres. The carded and drawn fibre was wound in 
one direction only on a frame and impregnated 
with resin. The felt thus produced was pre-cured 
as above and then cut into strips parallel to the 
alignment direction in order to fit the mould. 
The strips were packed into the hot mould and 
pressed to 3.86 x 10 6 Nm -2 at 150 ~ C for 30 min, 
as above. A rectangular block of composit e. the 
same size as the first was produced which had 
principal axes: (i) parallel to the carding direction 
(designated the x-direction), (ii) parallel to the 
pressing direction (designated the z-direction) and 
(iii) perpendicular to both of these directions 
(designated the y-direction). Specimens were 
prepared from this bar as described in Section 2.4. 
The co-ordinate system described above was also 
taken for the "random composite", although the 
x- and y-directions were identical. 
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TABLE I The specimens 

Specimen Description Direction of thermal Fibre volume Void content 
designation of specimen expansion measurements (%) (%) 

1 Chrysotile spelk Parallel to fibres 
2 Chrysotile spelk Perpendicular to fibres 
3 Random composite Parallel to pressing direction 55.9 1.4 
4 Random composite Perpendicular to pressing 55.9 1.4 

direction 
5 Aligned composite Parallel to pressing 55.3 1.0 

direction 
6 Aligned composite Perpendicular to pressing 55.3 1.0 

direction and parallel to 
carding direction 

7 Aligned composite Perpendicular to pressing 55.3 1.0 
direction and perpendicular 
to carding direction 

As part of the characterization of the fibres 
employed in the random bar, chrysotile flock 

�9 was gently teased into a very loose configuration, 
following which the diameters and lengths of 
200 fibres were measured with the aid of optical 
magnification and recording techniques. The 
average diameter, d, 5.44 x 10 -2 mm, and the 
average length, l, 3.3 mm, gave an aspect ratio 
lid = 60.7. The averages of corresponding deter- 
minations on 200 fibres of carded and drawn 
asbestos, as employed in the aligned bar, were 
d = 3.06 x 10 -2 mm, l = 3.9mm, givingl/d = 127. 
Wafers measuring approximately 50ram x 10 mm x 
1 mm were cut parallel and perpendicular to the 
z-direction of the random composite and in the 
x - y  and x - z  planes of the aligned composite. 
These were mounted, in turn, in an X-ray texture 
goniometer, which was employed to determine the 
fibre orientations in the planes of the wafers. The 
output from the diffracted beam was displayed on 
a chart recorder, from which the corresponding 
orientation distributions of the fibres were 
calculated after correcting for the effects of the 
background radiation. 

2.4. Specimen preparation, 
characterization and measurement 

Rejecting material from the boundaries of the 
blocks and concentrating upon the more nearly 
void-free regions, sets of three specimens were 
prepared, approximately 10 mm long, correspond- 
ing to the directions summarized in Table I. This 
was achieved using a diamond slitting wheel 
lubricated with water to prevent local heating. The 
surfaces of  the specimens were polished to remove 
any strained surface layers using fine emery paper 
and polishing paper. 
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Fibre volume fractions of approximately 50% 
were aimed for in the production of the bars. The 
actual compositions were determined from the 
weight loss incurred by burning off the resin from 
control specimens. As part of this evaluation, 
subsidiary heating investigations were undertaken 
with pure chrysotile in order to determine the 
fraction of the above weight reduction which had 
resulted from loss of hydroxyl groups. The final 
figures for the fibre volume fractions of the 
random and aligned bars were 55.9% and 55.3%, 
respectively. These figures were employed, 
together with the known densities of the chrysotile 
and resin, to calculate the void content of the 
random bar as 1.4% and that of the aligned bar as 
1.0%. The better figure for the aligned bar is 
believed to result from the improved packing of 
aligned fibres, compared with random fibres. 

The Fizeau interferometric apparatus employed 
for the measurements has been described else- 
where [3]. A lack of reproducibility, which was 
later shown to be associated with a variable water 
content, was reported in the thermal expansion 
work on the pure resin [3]. No such effects were 
encountered in the present work, in which it is 
believed that the fibres might have provided 
channels through which trapped water could 
escape from the resin matrix. 

3. Thermal expansion results 
The primary data resulting from the measurements 
are displayed graphically in Figs. 1 to 7 in order to 
convey some idea of the precision to which they 
were measured, in addition to being summarized in 
Table II in smoothed form for convenience. The 
value of figures for absolute accuracy expressed in 
percentage form is questionable when applied to 



TABLE 1I Smoothed values of the linear thermal expansion coefficients a of the specimens described in Table I 

T a (K- 1 ) for the specimens numbered below 

(K) 1 2 3 4 5 6 7 
X 10  -6  X 10 -6 X 10 -6 X 10 -6 X 10 -6 x 10 -6 x 10 -6 

80 -0 .70 9.31 2.49 8.98 0.56 5.45 
90 -0.35 4.40 10.08 2.88 9.70 0.80 5.99 

100 -0.03 5.06 10.83 3.24 10.40 1.02 6.49 
110 0.26 5.66 11.55 3.57 11.10 1.24 6.98 
120 0.54 6.26 12.22 3.88 11.75 1.45 7.45 
130 0.80 6.83 12.87 4.18 12.35 t.66 7.89 
140 1.04 7.38 13.44 4.46 12.92 1.85 8.31 
150 1.28 7.89 14.00 4.71 13.46 2.04 8.70 
160 1.50 8.40 14.50 4.96 13.95 2.23 9.07 
170 1.72 8.86 14.91 5.20 14.40 2.40 9.40 
180 1.93 9.32 15.39 5.44 14.78 2.56 9.70 
190 2.12 9.74 15.90 5.66 15.10 2.71 9.97 
200 2.31 10.12 16.52 5.87 15.50 2.89 10.25 
210 2.50 10.48 17.20 6.11 15.94 3.09 10.55 
220 2.68 10.82 18.00 6.36 16.44 3.29 10.86 
230 2.85 11.14 18.90 6.64 17.00 3.50 11.18 
240 3.02 11.45 19.76 6.91 17.68 3.73 11.52 
250 3.18 11.74 20.57 7.21 18.40 3.97 11.87 
260 3.35 12.03 21.33 7.51 19.21 4.21 12.23 
270 3.50 12.30 22.06 7.82 20.07 12.60 

linear thermal expansion coefficients which pass 
through zero. A better idea of  the capabilities of  
the apparatus in absolute terms may be gained by 
studying its performance when it was used to 
examine specimens of  standard NBS fused silica 
SRM 739 [9],  for which smoothed data have 
been issued by the National Bureau of  Standards. 

The only relevant earlier results found were 
for chrysotile. These consist of  a value for the 
linear thermal expansion coefficient, direction not 
specified, of  50 x 10 .6  K- 1 [ 1 0 ] ,  and an estimated 
value for the volume thermal expansion coefficient 
of  80 x 10 -6 K -1 [11].  Meaningful comments 
upon these results in relation to the results of  the 
present work are prevented by an absence of  
knowledge which would permit a detailed 
comparison of  the specimens employed on the 
three occasions. 

4. Discussion 
4 .1 .  C h r y s o t i l e  

A combined knowledge of  the specific heat 
capacity, linear thermal expansion coefficients and 
elastic constants of  a solid, over a wide range of  
temperature, permit the calculation of  vibrational 
properties which are directly related to its 
frequency spectrum. The specific heat capacity 
occupies a particularly important place in this 
group, but a knowledge of  the principal linear 

thermal expansion coefficients allows further in- 
formation to be gleaned. 

4. 1.1. The principal linear thermal 
expansion coefficients 

Previous experience of  the thermal expansion 
characteristics of pyrolytic graphite [12] and 
boron nitride [13],  both of  which possess 
anisotropic structures, indicates that two features 
in the results for the linear thermal expansion 
coefficient parallel to the fibres of  the chrysotile 
spelk, a~, displayed in Fig. 1, deserve comment.  
The low value of  ~x~ suggests tight binding between 
the atoms within the planes and this is consistent 
with the high Young's modulus in the fibre 
direction. At the lowest temperatures of  the 
investigation ~ assumes negative values. This 
behaviour is consistent with a high density of  
transverse modes of  vibration, which is favoured 
by open structures [14, 15]. This observation 
accords with known features of  the structure 
within the planes. The sign and temperature 
dependence of  the linear thermal expansion 
coefficient perpendicular to the fibres, o~, contain 
no unusual features. On the other hand, the 
atomic structure of  chrysotile might be expected 
to have comparatively weak forces between the 
silica and brucite layers, favouring a comparatively 
high value of  a~, whereas in fact ~[ is not  very 
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Figure 1 The linear thermal expansion 
coefficient c~ of  chrysotile asbestos, in a 
direction parallel to the fibres (specimens 
1): o 1st series, [] 2nd series of  results. 

Figure 2 The linear thermal expansion 
coefficient ~ of  chrysotile asbestos, in a 
direction perpendicular to the fibres 
(specimens 2): o 1st series, o 2nd series of  
results. 
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Figure 3 The linear thermal expansion 
coefficient ~ of  specimens 3: o 1st series, 
[] 2nd series of  results. 
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Figure 4 The linear thermal expansion 
coefficient a of specimens 4: o 1st series, 
[] 2nd series of results. 

Figure 5 The linear thermal expansion 
coefficient ~ of specimens 5:o 1st series, 
n 2nd series of results. 
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much bigger than ~ .  It seems at least possible that 
the voids within the structure are providing accom- 
modation for some of  the thermal expansion 
perpendicular to the fibres. This could be checked 
by measuring ~_ using an X-ray technique, when 
distinctly higher values of  a~_ should be found if 
this interpretation is correct. Alternatively the 
magnitude of  a[  might be limited by strain within 
the chrysotile lattice, resulting from the coiled 
structure. 

Figure 6 The linear thermal expansion coefficient 
a of specimens 6: o 1st series, [] 2nd series of 
results. 

4. 1.2. The influence o f  thermal strain 
In order to calculate lattice vibrational properties 
of  a solid from its specific heat capacity it is 
necessary to calculate the value at constant strain 
C n from the value which is measured at constant 
stress C t. An absence o f  knowledge of  the 
temperature dependence of  the isothermal bulk 
modulus of  elasticity XT prevents this, but some 
progress is possible with the aid of  the thermo- 
dynamic equation 
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Figure 8 The linear thermal expansion coefficient 
of (1 : 1.33) phenol formaldehyde resin: o run 2, 

D run 3 of Harwoodetal. [3]. 

Figure 9 The difference between the 
�9 specific heat capacities of chrysotile as- 
bestos at constant stress C t and constant 
strain Cr/ expressed in reduced form, in 
which • is the isothermal compressibility. 
Experimental uncertainties at the limits of 
the temperature range are depicted by the 
vertical lines. 

J 

100 150 200 250 

XT(Ct--C~) = zt32T, (1) 

in which 13 is the volume thermal expansion coef- 

ficient and V, T have their usual meanings. The 

density of  chrysotile was measured by Pundsack 

[7],  most o f  whose measurements were made on 

1 1 3 2  

Figure 7 The linear thermal expansion 
coefficient a of specimens 7: o 1st series, 

2nd series of results. 

T(N) 

specimens from a supply of  Danville Crude from 

Canada. Values ranging between 2.53 x 103 and 
2 .58x  103kgm -3 were reported and a room 

temperature value of  2.56 x 103 kgm -3 was 

assumed in the present work. Employing this in 

association with values of  fl = a~ + 2a~ produced 



the results for the functions Xr ( C t - C ~ )  dis- 
played in smoothed form in Fig. 9. The only 
elastic constant for chrysotile which appears to 
have been measured is the Young's modulus in a 
direction parallel to the fibres, at room tempera- 
ture [2, 11]. Taking this to give an order of 
magnitude for the bulk modulus allowed (Ct -- C~) 
to be estimated at between 1% and 2% in the neigh- 
bourhood of room temperature. Since (Ct -- Cn) 
diminishes with fall of temperature to zero at 
absolute zero, it is clear that vibrational properties 
calculated from C t rather than Cn will not be 
seriously in error on this account. 

4. 1.3. The specific heat capacity 
The Debye characteristic temperature of a simple 
solid is particularly useful in leading to the 
moments of its vibrational spectrum and their 
volume dependence. In the case of more complex 
solids, in which different types of vibration are 
open to groups of atoms within the assembly, 
progress is still possible provided that the individual 
spectra do not overlap. The structure of the 
chrysotile molecule is so complex, however, that 
significant progress in employing thermodynamic 
data in this way could only be made if the detailed 
elasticity data were available as functions of 
temperature, and even then it is doubtful whether 
more than gross features would be discerned. In 
view of these limitations a characteristic tempera- 
ture assuming 3nN vibrations per mole has been 
calculated, in which n is the atomicity and N is 
Avogadro's number. This function, which refers 
to the resultant spectrum, is displayed in Fig. 10. 

Apart from being linear in temperature over a 
wide range it displays no unusual features and the 
limited value of the averaged thermodynamic 
functions to which it opens the way was not 
considered sufficient to justify the additional 
calculation which would have been involved in 
their evaluation. Of the experimental specific 
heat capacities examined [16, 17], the well 
documented results of King et al. [16] were 
adopted for the present purpose. These workers 
measured the low temperature specific heat 
capacity of a natural sample of chrysotile which 
was considered to be 94% pure. Corrections were 
applied for excess water and other impurities, 
which were assumed to consist mainly of silicates, 
aluminates and ferrites, following which the results 
were believed to be accurate in an absolute sense 
to within 0.5%. 

4. 1.4. The GrOneisen parameters  
Defining a Grtmeisen parameter 7mean = flV/Ctxs, 
Xs being the adiabatic compressibility, the quantity 
XsTmea~ has been evaluated as a function of 
temperature. This function is plotted in Fig. 11, 
from which it may be seen that the increase with 
diminishing temperature lies outside the nominal 
limits attributed to experimental uncertainty. 
Speculation as to the likely temperature depen- 
dence of "Ym~n would be of little value in the 
absence of a knowledge of the temperature de- 
pendence of the compressibility of a material 
having a structure resembling that of chrysotile. 
More detailed information concerning the volume 
dependences of the frequencies of the lattice 
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Figure 10 The Debye characteristic temperature 0 of chrysotile asbestos, calculated assuming 18N vibrations per mole 
and neglecting the correction (C t --Cry). Experimental uncertainties are smaller than the diameters of the circles 
depicting the experimental results. 
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vibrations woutd be possible with a knowledge of  when 

the elastic constants c n ,  c12, c13 and c33 as 
functions of  temperature.  Together with the 
heat  capacity and thermal expansion data, these 
would permit  the calculation of  the Grtmeisen 
parameters 

V [2c,3a[+c33a~] (2) when 

and 

V 
= (3) 

which may be associated with directions parallel 
and perpendicular to the fibre direction [ 18].  

4. 1.5. Additional considerations 
There is some interest in the temperature de- 
pendence of  the ratio of  the principal linear 
thermal expansion coefficients a~ /a [ ,  displayed in 
Fig. 12, through Equations 2 and 3. Examinat ion 
o f  these equations reveals that :  

Figure I1 Reduced mean Gfiineisen para- 
meter of chrysotile asbestos spelk as a 
function of temperature, in which nominal 
uncertainty limits of -+ 10% are displayed 
at the limits of the temperature range. 

Tll = - - 7 i ,  

or f J! = 2c13 --(Cn + c n )  
, (4) 

OLfl C13  "I- C33 

7i = 0, 

and when 

")'11 = 7• 

a~ 2c13 - - ( c a ,  + cl2)  
(6) 

(Xfl C 13 - -  C33  

The temperatures at which these three relationships 

hold for the true values of  3'11 and 7 i  at these 
temperatures and the corresponding values of  
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0-I 
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Figure 12 The ratio of the principal linear 
thermal expansion coefficients of chry- 

�9 . . f f sotlle asbestos, m which all and aZ denote 
values parallel and perpendicular to the 
fibres respectively. Experimental un- 
certainties at the limits of the tempera- 
ture range are depicted by the vertical 
lines. 



f f oql/e I are clearly inter-related. Thus, if exper- 
imentally determined temperature dependent 
values of c13 or (Cll + c12) were to be substituted 
into Equation 2 and/or Equation 3, as appropriate, 
reiterative adjustment of the outstanding elastic 
constant(s) to achieve self-consistency among 
Equations 2 to 6 should provide a means of deter- 
mining them more precisely at these temperatures. 

4.2. The  compos i t e s  
4.2. 1. Preliminary remarks 
A number of attempts to predict the principal 
linear thermal expansion coefficients of unidi- 
rectional composites, consisting of matrices 
reinforced with continuous fibres, have appeared 
over the years [e.g. 19-21] .  Corresponding to the 
direction parallel to the fibres these all produced 
the same mathematical expression, but for the 
direction at right angles different results were 
predicted. Halpin and Pagano [22] went on to 
consider the in-plane thermal expansion character- 
istics of symmetrically balanced angle ply laminates 
and Pagano [23] later considered the out-of-plane 
case. The results of a recent study of the thermal 
expansion characteristics of a series of carbon 
fibre-reinforced plastics [24, 25] were analysed 
with the aid of the ideas contained in these 
treatments. Within restrictions imposed by the 
relevant physical data available for the constituents 
it was concluded that proper application of the 
models served to give a reasonably self-consistent 
account of the observations. 

The thermal expansion of short fibre-reinforced 
matrices has been dealt with less comprehensively 
than the corresponding case involving continuous 
fibres. Idealized cases of two-dimensional matrices 
containing randomly oriented short fibres and 
perfectly aligned short fibres have been considered 
[26, 27] and the case of preferential alignment 
in a two-dimensional matrix has been investigated 
[28] with the aid of a laminate analogy. Formulae 
have also been derived to predict the effective 
elastic properties of a composite containing 
randomly oriented fibres [29,30] but the case 
of the preferential alignment of short fibres in 
three dimensions does not appear to have been 
considered. 

4.2.2. Quafitative observations 
Before examining the extent to which the thermal 
expansion characteristics of the composites may 

be understood in terms of the linear thermal 
expansion coefficients and elastic constants of 
the constituents, a brief qualitative examination 
of the salient features of the results is worthwhile. 

4.2.2.1. Specimens 3 and 4. One of the scans 
undertaken with the X-ray goniometer indicated 
that the effect of applying pressure to the resin 
containing a random distribution of fibres, during 
the preparation of the random bar, was to give the 
fibres a preferential alignment perpendicular to the 
pressing direction. The linear thermal expansion 
coefficient of specimens 3 might, therefore, be 
expected to lie between those of the pure resin 
and specimens 2, that of specimens 4 might be 
expected to lie between those of the pure resin 
and specimens 1, and that of specimens 3 might 
be expected to exceed that of specimens 4. 
Examination of Figs. 1 to 4 and 8 reveals that all 
these expectations are borne out. Fig. 8 reveals a 
deviation from the monotonic variation of the 
linear thermal expansion coefficient of the resin 
with temperature over the approximate range 
180 to 250 K, the effects of which are visible 
in the results for the composite specimens 3 and 4, 
displayed in Figs. 3 and 4, respectively. 

4.2.2.2. Specimens 5, 6 and 7. Turning to speci- 
mens prepared from the aligned bar, examination 
of the X-ray texture goniometer scans revealed 
that the effect of carding was to give the fibres a 
preferential alignment in the x-direction, while the 
effect of pressure on the composite mixture had 
been to give the fibres a preferential alignment 
perpendicular to the z-direction, as before. It is, 
therefore, to be expected that the linear thermal 
expansion coefficient in the z-direction (specimens 
5) should exceed that in they-direction (specimens 
7) which, in turn, should exceed that in the 
x-direction (specimens 6). In addition, the linear 
thermal expansion coefficient of specimens 5 
might be expected to lie between those of the pure 
resin and specimens 2, while those of specimens 
6 and 7 should both lie between those of the pure 
resin and specimens 1. Examination of the relevant 
figures shows that all these expectations are 
borne out and, as in the case of results for speci- 
mens 3 and 4, the results for the specimens 
prepared from the aligned bar contain signs of the 
deviation from monotonic behaviour displayed by 
the results for the pure resin. 
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4.2. 3. Structure representation 
In addition to being mathematically complex, a 
rigorous treatment of the case of a preferential 
alignment in three dimensions would be of little 
more than academic interest in the present case 
because of the limited elastic constant data 
available. The following approach was developed 
in an attempt to explore the extent to which an 
approximate understanding of the results for the 
composites could be gained from the limited 
experimental data available. 

Suppose the composite may be considered to 
be constructed from a series of elemental blocks 
of resin, each of which contains one fibre along 
a central axis. The complete assembly, containing 
random or preferential alignment, may then be 
supposed to be made up by stacking the blocks 
in the appropriate sequence. The thermal 
expansion characteristics of the blocks in directions 
parallel and perpendicular to the fibres, a~ and tx~ 
respectively, may be calculated using Halpin's 
modification [27] of Schapery's equation [20] 
for a short fibre-reinforced composite, assuming a 
fibre volume fraction and aspect ratio equal to 
that of the macroscopic specimens. Suppose that 
the fibre axis of a block lies along direction OA in 
Fig. 13, in which the element of solid angle 
between directions 0, 0 + dO, and r r + d~b is 
dearly sin0d0d~b. If we now introduce a distri- 
bution function I(0, r which is proportional to 
the number of fibres per unit solid angle having 
orientation (0, r in unit volume, then the number 
of fibres per unit volume directed into the element 
of  solid angle defined above will be proportional 
to I(0, r sin 0d0d4~. 

A polar plot of the distribution function might 
be expected to resemble Fig. 14, in which OA = 
I(O,O). Fibre distributions measured with the 
X-ray texture goniometer provide the contours 
B'A'C and B'BB", but in order to express the 
linear thermal expansion coefficients in the 
principal directions Ox, Oy and Oz in terms of 
the corresponding properties of the elemental 
blocks, it is necessary to know how the shape of 
the contours B'A'C and B'BB" vary as they are 
rotated about Oz and Ox respectively. The em- 
pirical relation 

(OA' -- OA) = (OB' -- OB) sin 0 (7) 

satisfies the boundary conditions that (OA' -- OA) 
should have a maximum value (OB'--OB) when 
0 = rr/2 and a minimum value 0 when 0 = 0. Ex- 

1136 

z 

Y 

x 

Figure 13 Illustration of  the angular parameters employed 
in calculating the thermoelastic properties of  the com- 
posites. 

c 

X 

Figure 14 A polar plot of  the function I(0, 0), 
illustrating the preferential orientations of  the 
fibres. 

pressed in terms of the distribution function this 
becomes 

I(0,r =I(0,0)--[I(2 0)--I(2 r 
(8) 

4.2.4. Thermal expansion characteristics 
4.2.4.1. Formal considerations. If the contribution 
to the linear thermal expansion coefficient in the 
direction Oz, ~, from fibres having their axes 
oriented at (0, r to Oz is proportional to the 
number of such fibres, (d~o, ~ then 

N (c~e)0,~ (dN)0,q~ 
e 0,4~ 

O~z = (9 )  
~, (dN)o,4~ 

O,rp 



We saw earlier that (d_N)0,O r I(0, ~) sin 0 dO de. Substituting this, together with the result 

(ac)0,r = a n cos 2 0 + a[ sin 2 0 (10) 

into Equation 9 produces the expression 
7r ?r c 2 olc = fo fo I(O, ~) [all cos 0 + a~ sin 2 0 ] sin 0d0d4). (1 l) 

f o fo I (O, r sin 0d0dr 

Substituting for I(O, r from Equation 8, this becomes 

[ f I ( O , O -  --I  rr sin0 {a~ cos2 0 + a~ sin2 0} sin 0d0dr 
Jo 

a~ = " (12) 

~o ~:{., o,_ i, i;, o ) _ ,t;, +)] ~n 0) ~in..+ 
Evaluating the various terms in this expression finally leads to the following result for the linear thermal 
expansion coefficient of the aligned composite in the direction Oz : 

;: ~ lSo ( ~ o ) ( t )  " 0  ~r 7i" ~ 0 a~ I(O,O)sinOcosZOdO+a~( I(O,O)sin3OdO+[(a~+3o~[)/S] I , dr  2' 
c 

a a z  ~ -  

I(O,O) sinOdO + I ,r dr 7r, o 
~0  \ 

(13) 
In the case of the random composite I(rr/2, r = IOr/2, 0) and the terms in curly brackets in Equation 
13 become zero, giving 

alClfgI(O, 0) sin 0 cos 2 0d0 + a~foI(O , 0) sin 3 0d0 
c 

arz = (14) fol(O, 0) sin 0d0 

for the linear thermal expansion coefficient of the random composite in the direction Oz. 
Considering next the direction Ox, the expression for the linear thermal expansion coefficient which 

corresponds with Equation 9 is 
Y, (aC)0,$ (dN)0,~ 

0,r c (15) 
a x ~--- 

2; (dN)0,q 5 
0,q~ 

where (ac)0,~ is the contribution to the linear thermal expansion coefficient of the composite in the 
direction Ox, from fibres having orientation (0, r Denoting the angle between OA and Ox by )?, 

(aC)o,~ = a~ cos 2 2 + a_~ sin 2 2, (16) 

in which cos ~? = sin 0 cos r Substituting these results in Equation 5 and employing the result (dN)0,~ oc 
I(O, r sin 0 dO dr finally leads to 

[~ :o fo ~ r a ~  - -  a[) I (0, 0) sin 3 0 d 0 + a[ I (0, 0) sin 0 dO aax = 2 

+ ~ ( a ~ - - a ~ )  I ~,r  cos2r , 

(::(;+t (~)1] + a~_ I de -- rcI 0 
2 ' ' (17) 

:: i::(~) (~0)} I(O,O)sinOdO + l  I ~I 2 5,0 dO-- 2' 
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for the linear thermal expansion coefficient of  the 
aligned composite in the direction Ox. In the 
case of the corresponding random composite 
I(rr/J, (p)=I0r/2, 0), as before, and the terms in 
curly brackets become zero, leaving 

[fo I (0 ,0)  sin 3 0d0] e 

a~x = a~ + [2f~I(0 ,  0) sin O-~[(a ,  - ~ )  

(18) 

for the linear thermal expansion coefficient of  the 
random composite in directions perpendicular to 
Oz. 

Employing a similar procedure to the case of 
the direction Oy leads to an expression identical 
to Equation 17 apart from the term 

in the numerator, which is replaced by 

I , sin 2 ~bdr 

4.2.4.2. Numerical appraisal. In order to be able to 
assess the standing of the foregoing equations for 
the principal linear thermal expansion coefficients 
of the two composites it was first necessary to 
calculate a~ and a~ for the elemental blocks. 
Because a number of  the quantities required for 
these calculations were known at room tempera- 
ture only, the assessment had to be limited to this 
temperature. As a preliminary, the Young's 
modulus of an elemental block in a direction 
parallel to the fibre, E~, was first calculated in the 
manner described by Halpin [27]. In this calcu- 
lation the values of the aspect ratios and fibre 
volume fractions reported in 2.4 were employed, 
together with a value of Em = 3 . S G N m  -2 for 
the Young's modulus of  the resin [3] and E~ = 
145GNm -2 for the Young's modulus of the 
fibres in a direction parallel to their length [2]. 
In this way E~ was estimated at 72.6 GNm -2 in 
the case of the random composite and 72.8 GN m -2 
in the case of the aligned composite. These figures 
were employed in the subsequent calculations 
(following [27]) of a~ = 4.18 x'10 -6 K -1,  c~ = 
23.5 x 10 -6  K- 1 in the case of the random com- 
posite and ~ = 4.18 x 10 -6  K - 1 ,  o ~  = 23.6 x 
10 -76 K -1 in the case of the aligned composite. 
Small extrapolations of  the experimental data 
were necessary in order to arrive at values close to 
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room temperature for the linear thermal expansion 
coefficients of the resin (am = 29.4 x 10 -6 K -1) 
and of the fibres in a direction parallel to their 
length (a~ = 3.55 x 10 -6 K-a).  In the absence of 
experimental data, comparative considerations 
finally led to the adoption of values for the 
Poisson's ratio u m = 0.37 [3] for the resin and 
u~• = 0.30 for the fibre. The uncertainty turns out 
to be the greater in the case of the term which has 
the lesser influence in subsequent calculations, p~• 
A detailed consideration of the uncertainties 
involved in the estimation of the above values of 
a~ and a~_ indicates that these should not exceed a 
few per cent. 

TABLE III Principal linear thermal expansion coef- 
ficients ar room temperature 

Specimen L i n e a r  Experimental Calculated 
designation thermal (extrapolated) result 

expansion result X 10 -6 
coefficient X 10- 6 

3 arz 23 23. s 
4 arx 8 16 
5 %z 21 20 
6 %x 5 20 
7 aay 13 12 

Applying these results in the appropriate 
sequence to Equations 13, 14, 17 and 18, together 
with normalized graphical integrations of the 
terms in I(O, 4)), evaluated with the aid of the 
X-ray texture goniometer analyses, finally led to 
the calculated values of arz, arx , aaz, aax, Otay 

summarized in Table III. The (extrapolated) 
smoothed experimental values are also collected in 
this table for comparison. In view of the un- 
avoidable uncertainties associated with the ex- 
trapolations of the experimental results and the 
estimated uncertainties in the calculated results, 
the figures (with one exception) have been 
rounded off to the nearest part in 10 -6 . It is clear 
that agreement between measured and calculated 
results is good when dealing with directions in 
which the resin plays the dominant role, i.e. 
directions approximately perpendicular to the 
fibres (specimens 3, 5 and 7). It is worse when the 
fibres are playing an increasingly important part in 
determining the thermal expansion behaviour 
(specimen 4) and worst of all when the fibres are 
dominating the behaviour, i.e. in a direction with 
which the fibres are quite well aligned (specimen 6). 
This result is in keeping with a comparable 
observation on unidirectional continuous carbon 



fibre reinforced plastics [24], in which attention 
was drawn to the large percentage changes in the 
quantity corresponding to aa~ which resulted from 
small percentage changes in E~. Ignoring a number 
of elastic constants of the fibres, assessing others 
and resting heavily upon the empirical Equation 7, 
the present analysis is in no sense rigorous. For 
this reason hypothetical adjustments of E~ would 
be of little value in the present instance. 

5. Conclusions 
Measurements of the principal linear thermal 
expansion coefficients of chrysotile asbestos 
have been employed, together with ancillary data, 
to gain a preliminary insight into some of the 
vibrational characteristics of this mineral. In 
association with earlier thermal expansion 
measurements conducted upon phenol formal- 
dehyde resin, which formed the matrix of com- 
posites reinforced by chrysotile fibres, the results 
have been employed in an appraisal of thermal 
expansion measurements conducted upon 
specimens prepared from the composites. 

Investigations designed to produce thermal 
expansion data for composites, which are sub- 
sequently subjected to analysis on the basis of 
a collection of plausible assumptions, are frequently 
beset by problems arising from insufficient 
ancillary experimental data. This is particularly 
true when the reinforcing agent takes the form of 
structurally anisotropic fibres. Of these, chrysotile 
fibres are less well standardized than many, partly 
because of variations of composition associated 
with their different origins, partly because of 
impurities and partly because of a variable aspect 
ratio. Their straightness in a composite cannot 
be assured, fibre agglomeration cannot be avoided 
and a perfectly uniform fibre volume fraction 
cannot be achieved throughout the composite. 
These difficulties were recognized at the outset 
and a high degree of concord between observations 
and predictions based upon a simple structural 
model was not expected. In spite of these 
limitations the model has given encouraging results 
in the direction of low alignment density of the 
fibres. A next logical step in the development of 
an improved understanding of the dilatational 
behaviour of short fibre-reinforced plastics in a 
direction parallel to the fibres could take the form 
of an investigation involving better characterized 
fibres, which had a more nearly standard 
composition and a more uniform dispersion. 

Isotropic fibres would be particularly suitable, 
lending themselves to a rigorous analysis which 
would be less complicated than the corresponding 
case involving anisotropic fibres. 
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